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1.0 Introduction 

Human activities, through the changes in land use, hydro-
logic flows, fertilizer application, soil destabilization, ur-
banization, etc., have adversely modified the environment 
over a thousand years (Mahmood et al., 2010). The human 
activities coupled with inherent variation in climate, relief, 
hydrology, and soil type results in a significant temporal 
and spatial variation of nutrient concentration in surface 
water runoff (Cherry et al., 2008, Finlay et al., 2013). The 
nutrients together with sediments were diffusely transport-
ed into water bodies through runoff, leaching, and erosion 
(Owens et al., 2008, Maryna et al., 2016), causing a signif-
icant threat to coastal habitat and aquatic ecosystem, de-
clines in habitat quality, changes in species composition, 
low oxygen availability, changes in water clarity, and ulti-
mately affecting the biogeochemical function of freshwa-
ter ecosystems (Hoegh-Guldberg and Bruno, 2010, Wil-

liams et al., 2016). One of the important detrimental im-
pacts is the pollution and nutrient enrichment of freshwater 
ecosystems leading to eutrophication, caused as a result of 
non-point source losses of nutrients from farmlands 
(Huang et al., 2017), generally termed as diffuse water 
pollution from agriculture (Smith and Siciliano, 2015). 
The diffuse water pollution is challenging to assess and 
control (Cho et al., 2016), hence it has become a priority 
task in water monitoring and restoration in many countries 
(Hoppe et al., 2015). 

Point source pollution is usually determined by assessing 
and monitoring influents and effluents, based on flow and 
water quality indicators (Ogunfowokan et al., 2005; Vrzel 
et al., 2016). In contrast, diffuse source pollution is more 
difficult to assess, as it is distributed over a large area dif-
fusely, making it difficult to measure directly. Most of the 
models use in point source pollution assessment involve 
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the simulation of water quality and quantity using sedi-
ments, nutrients, pesticides and other agricultural inputs 
from agricultural areas. At the same time, the methods rely 
on the nutrient inputs and losses in the agricultural areas. 
However, these models require many data, limited by long 
time calibration, and may be constrained by model com-
plexity and the need for high skilled personnel to operate 
them. While nutrient budget methods require many farm 
input records and are sensitive to climate, topography, soil 
properties and land use system (Zhang and Huang, 2011).  

In recent years Geographical Information System (GIS) 
software has been increasingly used in diffuse pollution 
assessment. For example, Batbayar et al. (2018) used GIS 
and multivariate analysis using altitude, settlements, for-
est, cropland and distance to spring to predict river water 
quality of Kharaa River Basin. Ferreira et al. (2017) used 
nested partial least squares regression and GIS to assess 
anthropogenic impacts on riverine ecosystems. Yaghi and 
Salim (2017) integrated remote sensing and GIS to assess 
Al-Abrash Syrian Coastal Basin's surface water quality. 
Şener et al. (2017) evaluate water quality using water 
quality index (WQI) and GIS in Aksu River. In the present 
study, the ArcGIS software was used to develop some 
multi-criteria analysis (MCA) to assess diffuse pollution in 
the study area. Multi-criteria analysis (MCA) provides 
comprehensive analysis with relatively low efforts in 
terms of data requirements and time. It involves using 
multiple conflicting evaluation criteria to combine spatial 
data and value judgements to give environmental manage-
ment decisions for diffuse water pollution. It involves the 
use of Boolean operators (Eastman, 1999) to overlay sev-
eral maps with potentially unrelated data in a meaningful 
way to guide assessment and proper decision making 
(Janke, 2010). Hence it will be a beneficial tool in the as-
sessment of diffuse pollution. 

Holy Island and Budle Bay (Lindisfarne NNR) coastal 
water are among the UK's important designated coastal 
areas for overwintering birds and North East's only shell-
fish water. They contain Special Area of Conservation (EC 
Habitats Directives), Special Protection Area (EC Birds 
Directives), wetlands of international importance (Ramsar 
Convention) and Site of Special Scientific Interest 
(Wildlife and Countryside Act 1981, as amended) 
(Johnston et al., 2002). They are also part of the Northum-

berland coast area of outstanding natural beauty and herit-
age (Anderson, 1980). These coastal waters are facing 
diffuse water pollution from nutrient discharge of the 
neighbouring catchments (North Low, South Low, Fen-
ham, Ross Low and Waren Burn catchments). There is 
evidence of paralytic shellfish poisoning (PSP) since two 
decades ago (Joint et al., 1997), changing of phytoplank-
ton community (Bresnan et al., 2009), epigeal beetle com-
munity (Eyre and Luff, 2005), and algal blooms (Tett and 
Edwards, 2002). Maier (2009) associated the diffuse pollu-
tion with increased nutrients input from river runoff, sew-
age discharges, atmospheric inputs and possibly submarine 
groundwater discharges. These currently make the Lindis-
farne NNR failing to meet the EU water framework di-
rective (WFD: 2000/60/EC) standards (Chave, 2001), and 
was designated as a polluted water (eutrophic) since 2002 
(Maier, 2009). Therefore, there is need for scale assess-
ments of diffuse pollution in the Northeast coastal catch-
ments to know the spatial characteristic of the pollution to 
identify areas that are more influential in causing diffuse 
pollution, hence facilitating the characterization of the 
pollution in different landscapes and the development of 
long-time pollution control strategy. 

This study aims to develop a geographical information 
system multi-criteria analysis, to assess diffuse water pol-
lution risk at Northeast England coast catchments showing 
areas of different pollution potentials for inform manage-
ment decisions. 

2.0. Materials and methods 

2.1. Study area 

The study area includes North Low, South Low, Fenham, 
Ross Low and Waren Burn catchments, located close to 
Scotland border on the northeast coast of England (OS X-
easting and Y-northing 394721, 418004, and 648814, 
628282 respectively) (Figure 1). The study area is widely 
covered by arable and horticultural land use with patches 
of woodland (Rowland et al., 2017), soil group consist 
mainly of medium to heavy and medium to light (silty) 
soils (Lawley, 2011), and rainfall ranges between 660 to 
750mm (Rainfall, 2019). Streams of water network pass 
through the catchments and discharge into the large water 
bodies of Holy Island and Budle Bay. 

Figure 1: Map of the study area showing catchments, sampling points and rainfall stations 
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2.2. Development of evaluation criteria  

To conduct multi-criteria analysis in GIS, criteria need to 
be identified. The criterion is obtained through measurable 
parameters that define an objective's degree of achieve-
ment (Geneletti, 2007). The criteria should encompass all 
the problem (Zhang and Huang, 2011), but at the same 
time should be limited to the most important ones to re-
duce the complexity of analysis process (Keeney and Raif-
fa, 1993). Four criteria were selected to assess the poten-
tial of diffuse water pollution in the study area. These in-
clude land use, soil type, slope and rainfall. 

2.2.1. Extraction of land use information 

Land cover/land use is believed to be a significant contrib-
uting factor that controls nutrient pollution in a given area 

(Abdulkareem et al., 2018). To obtain the information on 
land use, land cover map was obtained from the environ-
mental data download of Digimap (Rowland et al., 2017). 
The map is for the whole Great Britain in a scale of 
1:2,500 in a file geodatabase format containing polygons 
of separate classes of land uses. To obtain only the study 
area land use map, a polygon of the study area was used to 
clip the land cover map of Great Britain using clip tool of 
ArcGIS, which gives an output land use map of only the 
study area. The clipped map was dissolved using land use 
field in dissolve tool of ArcToolbox into a similar polygon 
to aggregate each different land use to be represented by a 
single feature/polygon for the analysis (Table 1). 

 

Table 1: Proportion of land use types in the study area 

Land Use Type Land Area (m2) Percentage Area Cover (%) 

Acid grassland 2299710.972 0.99 

Arable and horticulture 132526706.9 57.02 

Bog 251482.6847 0.11 

Broadleaf woodland 12375945.03 5.32 

Calcareous grassland 284825.6556 0.12 

Coniferous woodland 9029897.728 3.89 

Freshwater 156885.4762 0.07 

Heather grassland 2091243.512 0.90 

Improved grassland 53627272.25 23.07 

Inland rock 10982.95574 0.01 

Littoral rock 68136.51727 0.03 

Littoral sediment 5113871.291 2.20 

Saltmarsh 9443045.921 4.06 

Suburban 3257825.242 1.40 

Supralittoral sediment 1624477.195 0.70 

Urban 264611.974 0.11 

2.2.2. Extraction of soil type information 

The amount of nutrient/pollutant losses through the runoff 
is believed to be a function of soil type and slope (Taye et 
al., 2013, Wang et al., 2017). To obtain information on 
soil type, soil parent material map was obtained from the 
geology data download of Digimap (Lawley, 2011). The 
map contains tiles of 23km by 23km with a scale of 

1:50,000 in shapefile format. The study area falls within 
four (4) tiles, i.e. ew001, ew002, ew003 and ew004. The 
four tiles were merged using the merge tool of 
ArcToolbox into one layer for subsequent analysis. The 
merged map was then dissolved using soil group field in 
dissolve tool of ArcToolbox into similar polygons to ag-
gregate each different soil group to be represented by a 
single feature/polygon for the analysis (Table 2). 

Table 2: Proportion of soil group types in the study area 

Soil Type Land Area (m2) Percentage Area Cover (%) 

All 20398781.01 8.80 

Heavy to medium to light(silty) 35710186.71 15.41 

Light to medium 12052435.99 5.20 

Light(sandy) 5989736.08 2.59 

Light(sandy) to medium(sandy) 6795565.54 2.93 

Light(silty) to medium(silty) 15947330.66 6.88 

Medium 20177973.84 8.71 

Medium to heavy 73380002.28 31.67 

Medium to light(silty) 11021068.90 4.76 

Medium to light(silty) to heavy 25718950.25 11.10 

Medium(silty) to light(silty) to heavy 4499633.61 1.94 
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 2.2.3. Slope map creation 

Slope plays a vital role in the movement of pollutants from 
source to water bodies (El Kateb et al., 2013). To obtain 
information on a slope, slope map was created using a 
digital terrain model (DTM) map. The DTM map was ob-
tained from OS data download of Digimap (DTM, 2018). 
The map contains tiles of 5km by 5km with a scale of 
1:10,000 in ASC/raster format. About thirty (30) tiles were 
contained within the study area. The thirty mosaic tiles 
were merged into a single new raster using mosaic to new 
raster tool of ArcToolbox for easy and subsequent analy-
sis. Slope map was computed from the new raster using 
slope tool of ArcToolbox with output measurement in de-
gree.  

2.2.4. Euclidean distance rivers 

The distance of pollutants from the source to the water 
bodies is an essential factor determining the number of 
pollutants discharged to water bodies. Water network map 
of the study area obtained from Digimap was used to cre-
ate the Euclidean distance (i.e. distance of cell of interest 
to the nearest point of interest) map.  

2.3. Multi-criteria analysis (MCA) for diffuse pollution 
risk assessment 

The multi-criteria analysis involves using multiple con-
flicting evaluation criteria to combine spatial data and val-
ue judgements to give environmental management deci-
sions for diffuse water pollution. Based on the preliminary 
analysis conducted and literature, it was discovered that 
land cover/land use (Abdulkareem et al., 2018), soil type 
(Taye et al., 2013, Wang et al., 2017), slope (Haggard et 
al., 2005, El Kateb et al., 2013) and proximity of pollutant 
to surface water (Zampella et al., 2007, Anteneh et al., 
2018) were the significant factors used to assess the poten-
tial of diffuse water pollution. They characterize the 
amount of pollutant generated per area, the pollutant's 
losses to surface water, the proximity of pollutant to sur-
face water, and the climatic driving force. Thus, we identi-
fy the land use type, soil group, slope, and Euclidean dis-
tance rivers as our evaluation criteria. They were used as 
the multi-criteria analysis factors for the risk assessment of 
diffuse pollution in the study area to identify areas of high, 
moderate and low diffuse pollution risk.  

Before multi-criteria analysis, all the factor maps need to 
be converted into a raster format and reclassified into uni-
form classes to satisfy the condition of multi-criteria anal-
ysis (Voogd, 1983). This is to provide equal weighting 
such that maps with different units will be treated equally. 
All the maps were reclassified into 3 classes, i.e. high, 
moderate and low pollution risk as 3, 2 and 1. 

2.3.1 Conversion and reclassification of land use map 

The dissolved land use map of the study area was used as 
the input features in the polygon to raster the conversion 
tools of ArcGIS to convert the map into a raster format. 
The output map was then used as the input raster in the 
reclassify tool of spatial analyst tools of ArcGIS to reclas-
sify the map into 3 classes; high, moderate and low risk as 
3, 2 and 1 respectively based on the potential of each land 
use type. High-risk areas consist of arable and horticultural 
land areas, moderate risk consists of improved grassland, 
suburban and urban land areas, while the remaining land 
use areas were classified as low-risk areas (Koo and 
O'Connell, 2006). These give the land use map for MCA. 

2.3.2 Conversion and reclassification of soil group map 

The dissolved soil group map was used as the input fea-

tures in the polygon to raster the conversion tools of 
ArcGIS to convert the map into a raster format. The output 
map was then used as the input raster in the reclassify tool 
of spatial analyst tools of ArcGIS to reclassify the map 
into 3 classes; high, moderate and low risk as 3, 2 and 1 
respectively based on dominant soil group in each class. 
High-risk areas consist of groups with heavy soils, moder-
ate risk consisting of groups with medium soils, and low-
risk groups with light soils. These give the soil group map 
for MCA. 

2.3.3 Reclassification of slope map 

The slope map created was used as the input raster in the 
reclassify tool of spatial analyst tools of ArcGIS to reclas-
sify the slope map into 3 classes; high, moderate and low 
risk as 3, 2 and 1 respectively. Based on Chiang's (1971) 
assumption that 70 is the baseline for runoff potential, high
-risk areas with a slope above 90, moderate risk are those 
with a slope between 50 and 90, and low-risk areas are 
those with a slope below 50. These give the slope map for 
MCA. 

2.3.4 Reclassification of Euclidean distance map 

The Euclidean distance map was reclassified into three 
classes using reclassify tool of spatial analyst tools of 
ArcGIS into high, moderate and low risk as 3, 2 and 1 
respectively. Shortest distances were assigned as 3 while 
highest distances were assigned as 1. These give the Eu-
clidean distance map for MCA. 

2.3.5 Multi-criteria analysis 

Before implementing multi-criteria analysis, weights need 
to be assigned to each criterion to indicate its importance 
relative to other criteria under consideration (Malczewski 
and Rinner, 2015). It determines the relative influence of 
criteria in the analysis and has a crucial impact on the 
evaluation results (Zhang and Huang, 2011). The ranking 
method used in several GIS multi-criteria analysis (Proulx 
et al., 2007; Zucca et al., 2008; Ozturk and Batuk, 2011) 
was used to assign the weight to each criterion. The first 
step is straight ranking were all the criteria were arranged 
from the most important as 1, second important as 2 up to 
the last criterion. Secondly, the rank-sum weights for each 
criterion were calculated using the following equation 
(Proulx et al., 2007): 

 Wj = ((F – 1) * ((Rmax – Rj)/ (Rmax – Rmin))) + 1 

Where Wj is the weight of criterion; F is the weight of the 
most important criterion (greatest weight); Rmax is maxi-
mum rank (rank of the less important criterion); Rj is the 
rank of criterion "j" and Rmin is 1 (minimum rank: rank of 
the most important criterion). 

The multi-criteria analysis was then implemented in the 
raster calculator tool of spatial analyst tool of ArcGIS. It 
was done using the Boolean operators to multiply each 
criterion by its assigned weight and combined all the maps 
to give an output risk assessment map showing the spatial 
distribution of diffuse pollution across the study area. 

3.0 Results and discussion 

3.1. Evaluation criteria 

The study area consists of 16 different land cover/land use 
(Figure 2). Arable and horticulture occupied 57.02%, im-
proved grassland occupied 23.07%, broadleaf woodland 
occupied 5.32%, coniferous woodland occupied 0.12%, 
suburban settlements occupied 1.40%, and urban settle-
ment occupied 0.11% respectively. This shows that the 
catchments received a significant amount of agricultural 
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inputs due the high percentage of areas occupied by arable 
production, hence can serve as the primary source of nutri-
ents in the surface water (Dupas et al., 2015). 

The study area consists of 11 different soil groups (Figure 
3). North Low and South Low catchments were widely 
covered by medium to heavy soil group with strips of 
heavy to medium to light (silty) soil group. Waren Burn 
catchment is widely covered by medium to light (silty) to 
heavy soil group. Although Fenham and Ross Low catch-

ments were covered with medium to heavy soil group, 
they contain a significant amount of light (sandy) and me-
dium soil groups. This shows that all the catchments con-
tain a significant amount of heavy soils. García-Díaz et al. 
(2017) show that different soil and soil groundcover types 
generate different amounts of nitrogen concentration in 
runoff with conventional arable, generating more runoff 
with higher nitrogen concentration. Therefore, soil group 
was considered as a factor of diffuse pollution risk evalua-
tion. 

Figure 2: Land cover/Landuse map of the study area 

Figure 3: Soil group map of the study area 
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Slope map of the study area was created in ArcGIS 
(Figure 4). The slope map was computed in degrees with 
71.430 as the highest slope. Most of the catchments were 
covered with a lower slope with higher slope along depres-
sions. Waren Burn catchment have significantly higher 
slopes with Ross Low catchment having the lowest, and 
this shows that different places will have different poten-
tials to runoff, hence different amount of pollutants to wa-

ter bodies. This is true based on the studies of Ghanizadeh 
et al. (2019) and (Mu et al., 2015) that runoff intensity 
increases with increase in slope, therefore, most of the 
nutrients will be washed down leaving higher slope areas 
with less nutrients. The slope is among the dominant pa-
rameters used to determine runoff and nitrogen losses to 
surface water (Ghanizadeh et al., 2019, Dai et al., 2017, 
Cao et al., 2015). 

Figure 4: Slope map of the study area (measurement in degree) 

3.2 Multi-criteria analysis 

Based on the established literature, land cover/land use 
(Abdulkareem et al., 2018), soil type (Taye et al., 2013, 
Wang et al., 2017), slope (Haggard et al., 2005, El Kateb 
et al., 2013) and proximity of pollutant to surface water 
(Zampella et al., 2007, Anteneh et al., 2018) were the sig-
nificant factors use to consider in diffuse pollution risk 
assessment. Therefore, land use, soil group, slope and Eu-
clidean distance rivers were identified as the factors for 

multi-criteria analysis for diffuse pollution risk assess-
ment. All the factor maps (Figure 5) for multi-criteria anal-
ysis were obtained using the ArcGIS. Each map shows 
areas of high, moderate and low risk of diffuse pollution 
based on the criterion. A Boolean operator multiply (*) 
and add (+) were used to combine the factor maps for mul-
ti-criteria analysis. Multiply sign times the map based on 
its relative importance to the other while the add sign com-
bined all the maps to give the output MCA map.  
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Figure 5: Multi-criteria analysis factor maps 

Based on the ranking method, as explained in material and 
methods, weights were obtained for each criterion (Table 
3). Land-use has been the most crucial criterion, scored 
10, soil type scored 7, and slope scored 4, and Euclidean 
distance scored 1. This shows the relative importance of 
each criterion in relation to the other. The multi-criteria 
analysis was implemented in the raster calculator tool of 
spatial analyst tool of ArcGIS using the equation below; 

Output = (“10*Land-use” + “7*Soil type” + “4*Slope” + 
“Euclidean distance”) 

This gives the output multi-criteria analysis map (Figure 6) 
of the study area based on the criteria of land use, soil 
type, slope and Euclidean distance rivers. The map shows 
the risk assessment of diffuse pollution distribution in the 
study area showing areas of high, moderate and low pollu-
tion risk.  

Table 3: Ranking and weighting of criteria 

Criteria Rank Weight 

Land use 1 10 

Soil type 2 7 

Slope 3 4 

Euclidean distance 4 1 

From the map (Figure 6), North Low catchments areas 
recorded the highest abundance of high-risk areas. This is 
attributed to the high percentage of arable and horticultural 
activities taken place in the area. The diffuse risk assess-
ment distribution is quite like the distribution of land use 
types, where areas occupied by arable and horticultural 
production recorded the highest risk. Kyloe Hills area rec-

orded the lowest potential to the diffuse pollution risk. 
This is also attributed to the high abundance of coniferous 
woodland in the area, i.e. less intense agricultural activi-
ties. Another factor is the nature of soil type dominated 
with light (sandy) soil group and high slope. Therefore, in 
targeting diffuse pollution management, land use should 
be given adequate importance. 
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4.0 Conclusion 

Assessing the contribution of different land areas to the 
potential of non-point source pollution has become a prior-
ity task in watershed management and aquatic ecosystem 
protection. However, existing methods depend on the 
availability of local data, long time calibration and model 
complexity. This study developed a multi-criteria analysis 
GIS-supported method to evaluate the potentials of differ-
ent land areas to diffuse water pollution in Holy Island and 
Budle Bay catchments. Five catchments were surrounding 
the study area, and these include North Low, Fenham, 
South Low, Ross Low and Waren Burn. Four criteria were 
identified and developed to map each land area's source 
capacity to water pollution, the efficiency of runoff gener-
ation, the flow path to a water body, and the climatic driv-
ing force. The criteria include land use, soil type, slope, 
and Euclidean distance rivers. The proposed method is a 
low-effort, and less time-consuming approach since most 
of the required data is either already available (e.g. land-
cover map, soil group map, river network map) or quickly 
produced with limited inputs.  

Geographical Information System (ArcGIS version 10.5) 
environment provided the best ground to implement the 
analysis, and maps were generated that could be easily 
interpreted to support the decision-making process. The 
maps aim at facilitating the comparisons between different 
land areas in the catchments. They can be utilized and 
improved and detailed information on the chemical and 
biological conditions of receiving surface water bodies. 

The MCA map is useful for various decision-making, such 
as identifying high-priority areas of nitrogen export and 
improving the areas for pollution prevention. The results 
also helped evaluate the patterns of environmental condi-
tions that facilitate nitrogen pollution and release to water 
bodies, which will help ecological conservation and envi-
ronmental protection. 

On the other hand, the assessment method is constrained 
by the lack of detailed information on the nitrogen and 
other pollutants balance. The various farming practices, 
different crops, fertilizer and other inputs application in-
tensity, and irrigation condition were not classified. Also, 
the nitrogen pollution from livestock farms and sewage 
discharges was not assessed, increasing concern in the 
pollution assessment. Improvement can be made to the 
assessment method by considering other nitrogen pollution 
pathways, such as volatilization from the soil, removal by 
lateral flow and leaching into deep soil and groundwater. 
Furthermore, for the better validation process, information 
on wastewater treatment and discharge will help under-
stand the relationship between diffuse water pollution and 
the affected open water quality.  
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